Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(1): 409-423, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34910486

RESUMO

With increasing drug resistance in tuberculosis (TB) patient populations, there is an urgent need for new drugs. Ideally, new agents should work through novel targets so that they are unencumbered by preexisting clinical resistance to current treatments. Benzofuran 1 was identified as a potential lead for TB inhibiting a novel target, the thioesterase domain of Pks13. Although, having promising activity against Mycobacterium tuberculosis, its main liability was inhibition of the hERG cardiac ion channel. This article describes the optimization of the series toward a preclinical candidate. Despite improvements in the hERG liability in vitro, when new compounds were assessed in ex vivo cardiotoxicity models, they still induced cardiac irregularities. Further series development was stopped because of concerns around an insufficient safety window. However, the demonstration of in vivo activity for multiple series members further validates Pks13 as an attractive novel target for antitubercular drugs and supports development of alternative chemotypes.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Benzofuranos/farmacologia , Palmitoil-CoA Hidrolase/antagonistas & inibidores , Piperidinas/farmacologia , Policetídeo Sintases/antagonistas & inibidores , Benzofuranos/síntese química , Cardiotoxicidade , Descoberta de Drogas , Canal de Potássio ERG1 , Coração/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Piperidinas/síntese química , Relação Estrutura-Atividade
2.
ACS Infect Dis ; 7(6): 1666-1679, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33939919

RESUMO

Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.


Assuntos
Mycobacterium tuberculosis , Peptídeo Sintases/antagonistas & inibidores , Coenzima A , Cisteína/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ácido Pantotênico/análogos & derivados , Peptídeo Sintases/genética
3.
ACS Omega ; 6(3): 2284-2311, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521468

RESUMO

With the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, there is a pressing need for new oral drugs with novel mechanisms of action. A number of scaffolds with potent anti-tubercular in vitro activity have been identified from phenotypic screening that appear to target MmpL3. However, the scaffolds are typically lipophilic, which facilitates partitioning into hydrophobic membranes, and several contain basic amine groups. Highly lipophilic basic amines are typically cytotoxic against mammalian cell lines and have associated off-target risks, such as inhibition of human ether-à-go-go related gene (hERG) and IKr potassium current modulation. The spirocycle compound 3 was reported to target MmpL3 and displayed promising efficacy in a murine model of acute tuberculosis (TB) infection. However, this highly lipophilic monobasic amine was cytotoxic and inhibited the hERG ion channel. Herein, the related spirocycles (1-2) are described, which were identified following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis. The novel N-alkylated pyrazole portion offered improved physicochemical properties, and optimization led to identification of a zwitterion series, exemplified by lead 29, with decreased HepG2 cytotoxicity as well as limited hERG ion channel inhibition. Strains with mutations in MmpL3 were resistant to 29, and under replicating conditions, 29 demonstrated bactericidal activity against M. tuberculosis. Unfortunately, compound 29 had no efficacy in an acute model of TB infection; this was most likely due to the in vivo exposure remaining above the minimal inhibitory concentration for only a limited time.

4.
ACS Infect Dis ; 4(6): 954-969, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522317

RESUMO

Mycobacterium tuberculosis ( MTb) possesses two nonproton pumping type II NADH dehydrogenase (NDH-2) enzymes which are predicted to be jointly essential for respiratory metabolism. Furthermore, the structure of a closely related bacterial NDH-2 has been reported recently, allowing for the structure-based design of small-molecule inhibitors. Herein, we disclose MTb whole-cell structure-activity relationships (SARs) for a series of 2-mercapto-quinazolinones which target the ndh encoded NDH-2 with nanomolar potencies. The compounds were inactivated by glutathione-dependent adduct formation as well as quinazolinone oxidation in microsomes. Pharmacokinetic studies demonstrated modest bioavailability and compound exposures. Resistance to the compounds in MTb was conferred by promoter mutations in the alternative nonessential NDH-2 encoded by ndhA in MTb. Bioenergetic analyses revealed a decrease in oxygen consumption rates in response to inhibitor in cells in which membrane potential was uncoupled from ATP production, while inverted membrane vesicles showed mercapto-quinazolinone-dependent inhibition of ATP production when NADH was the electron donor to the respiratory chain. Enzyme kinetic studies further demonstrated noncompetitive inhibition, suggesting binding of this scaffold to an allosteric site. In summary, while the initial MTb SAR showed limited improvement in potency, these results, combined with structural information on the bacterial protein, will aid in the future discovery of new and improved NDH-2 inhibitors.


Assuntos
Mycobacterium tuberculosis/enzimologia , NADH Desidrogenase/química , Quinazolinonas/química , Estrutura Molecular , NADH Desidrogenase/antagonistas & inibidores , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
5.
ACS Infect Dis ; 3(1): 18-33, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-27704782

RESUMO

A potent, noncytotoxic indazole sulfonamide was identified by high-throughput screening of >100,000 synthetic compounds for activity against Mycobacterium tuberculosis (Mtb). This noncytotoxic compound did not directly inhibit cell wall biogenesis but triggered a slow lysis of Mtb cells as measured by release of intracellular green fluorescent protein (GFP). Isolation of resistant mutants followed by whole-genome sequencing showed an unusual gene amplification of a 40 gene region spanning from Rv3371 to Rv3411c and in one case a potential promoter mutation upstream of guaB2 (Rv3411c) encoding inosine monophosphate dehydrogenase (IMPDH). Subsequent biochemical validation confirmed direct inhibition of IMPDH by an uncompetitive mode of inhibition, and growth inhibition could be rescued by supplementation with guanine, a bypass mechanism for the IMPDH pathway. Beads containing immobilized indazole sulfonamides specifically interacted with IMPDH in cell lysates. X-ray crystallography of the IMPDH-IMP-inhibitor complex revealed that the primary interactions of these compounds with IMPDH were direct pi-pi interactions with the IMP substrate. Advanced lead compounds in this series with acceptable pharmacokinetic properties failed to show efficacy in acute or chronic murine models of tuberculosis (TB). Time-kill experiments in vitro suggest that sustained exposure to drug concentrations above the minimum inhibitory concentration (MIC) for 24 h were required for a cidal effect, levels that have been difficult to achieve in vivo. Direct measurement of guanine levels in resected lung tissue from tuberculosis-infected animals and patients revealed 0.5-2 mM concentrations in caseum and normal lung tissue. The high lesional levels of guanine and the slow lytic, growth-rate-dependent effect of IMPDH inhibition pose challenges to developing drugs against this target for use in treating TB.


Assuntos
Antituberculosos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Sulfonamidas/farmacologia , Animais , Desenho de Fármacos , Descoberta de Drogas , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Mutação , Conformação Proteica , Coelhos , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacocinética , Tuberculose/tratamento farmacológico
6.
Eur J Med Chem ; 103: 530-8, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26408453

RESUMO

There is an urgent need for the development of new antimalarial compounds. As a result of a phenotypic screen, several compounds with potent activity against the parasite Plasmodium falciparum were identified. Characterization of these compounds is discussed, along with approaches to optimise the physicochemical properties. The in vitro antimalarial activity of these compounds against P. falciparum K1 had EC50 values in the range of 0.09-29 µM, and generally good selectivity (typically >100-fold) compared to a mammalian cell line (L6). One example showed no significant activity against a rodent model of malaria, and more work is needed to optimise these compounds.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Malária/parasitologia , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ratos , Solubilidade , Relação Estrutura-Atividade
7.
ChemMedChem ; 8(9): 1537-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23918316

RESUMO

Previously reported pyrrolones, such as TDR32570, exhibited potential as antimalarial agents; however, while these compounds have potent antimalarial activity, they suffer from poor aqueous solubility and metabolic instability. Here, further structure-activity relationship studies are described that aimed to solve the developability issues associated with this series of compounds. In particular, further modifications to the lead pyrrolone, involving replacement of a phenyl ring with a piperidine and removal of a potentially metabolically labile ester by a scaffold hop, gave rise to derivatives with improved in vitro antimalarial activities against Plasmodium falciparum K1, a chloroquine- and pyrimethamine-resistant parasite strain, with some derivatives exhibiting good selectivity for parasite over mammalian (L6) cells. Three representative compounds were selected for evaluation in a rodent model of malaria infection, and the best compound showed improved ability to decrease parasitaemia and a slight increase in survival.


Assuntos
Antimaláricos/química , Pirróis/química , Animais , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Cloroquina/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Meia-Vida , Camundongos , Microssomos Hepáticos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Pirimetamina/farmacologia , Pirróis/síntese química , Pirróis/farmacocinética , Pirróis/farmacologia , Relação Estrutura-Atividade
8.
J Med Chem ; 56(7): 2975-90, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23517371

RESUMO

In the pursuit of new antimalarial leads, a phenotypic screening of various commercially sourced compound libraries was undertaken by the World Health Organisation Programme for Research and Training in Tropical Diseases (WHO-TDR). We report here the detailed characterization of one of the hits from this process, TDR32750 (8a), which showed potent activity against Plasmodium falciparum K1 (EC(50) ~ 9 nM), good selectivity (>2000-fold) compared to a mammalian cell line (L6), and significant activity against a rodent model of malaria when administered intraperitoneally. Structure-activity relationship studies have indicated ways in which the molecule could be optimized. This compound represents an exciting start point for a drug discovery program for the development of a novel antimalarial.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Descoberta de Drogas , Pirróis/química , Pirróis/farmacologia , Animais , Linhagem Celular , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Plasmodium falciparum/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
9.
Int J Antimicrob Agents ; 31(4): 337-44, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18359434

RESUMO

Several newer 6-fluoro/nitro-4-oxo-7-(sub)-4H-[1,3]thiazeto[3,2-a]quinoline-3-carboxylic acids (10-11a-q) were synthesised from 3,4-difluoro aniline and 3-fluoro-4-nitro aniline by nine-step synthesis. The compounds were evaluated for in vitro and in vivo antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multidrug-resistant M. tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC2) as well as being tested for their ability to inhibit the supercoiling activity of DNA gyrase from M. smegmatis. Among the synthesised compounds, 7-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)-6-nitro-4-oxo-4H-[1,3]thiazeto[3,2-a]quinoline-3-carboxylic acid (11l) was found to be the most active compound in vitro, with minimum inhibitory concentrations (MICs) of 0.09 microM and <0.09 microM against MTB and MTR-TB, respectively. Compound 11l was found to be 4 times and >506 times more potent than isoniazid against MTB and MDR-TB, respectively. In the in vivo animal model, 11l decreased the bacterial load in lung and spleen tissues by 30% and 42%, respectively, at a dose of 50 mg/kg body weight.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/toxicidade , Azetinas/farmacologia , Azetinas/toxicidade , Dermatite Fototóxica/patologia , Mycobacterium/efeitos dos fármacos , Quinolinas/farmacologia , Quinolinas/toxicidade , Animais , Antibacterianos/química , Azetinas/química , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Físico-Química , Chlorocebus aethiops , Inibidores Enzimáticos/farmacologia , Feminino , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/microbiologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Quinolinas/química , Baço/efeitos dos fármacos , Baço/microbiologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...